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In this research, we have modeled the relationships between leaf nutrient concentrations and 
the yields of avocado trees with the aim of developing decision support tools for improved 
fertilization and nutrient management to increase avocado fruit yields. Using a data base of 
~3500 observations in which nutrient concentration profiles and yields of individual trees 
were examined over several harvest seasons, we now present in our final report a refined 
model that predicts nutrient-yield relationships based on all possible combinations for the 11 
elements that are monitored by leaf analyses. The research conducted represents an intellectual 
evolution of ideas on how to mine leaf and soil analysis data sets using different filters and 
mathematical methods to extract relationships between selected variables such as yield, fruit 
quality, and chloride toxicity (patent application filed, UCR 2016) Our modeling approaches 
involved a range of complimentary and independent methods that included artificial neural 
networks, Kohonen self-organizing maps, frontier/envelope analysis, and quantile regression. 
The ultimate product from our research is the translation of these data into working equations 
and lookup tables with macros that can be employed in sophisticated software for use as a 
decision support tool.  
 
In the two previous activity reports, we reported specific findings on nutrient-yield response 
relationships for each of the individual elements required for plant nutrition. The results 
attained from quantile regression and envelope analyses identified target ranges for each 
element and the potential yield for trees having specific ranges for each leaf nutrient element. 
Figures and concepts generated from the results of quantile regression pointed out the need for 
careful filtering of the data set to model trees having high yields, but that were not in an 
alternate bearing mode. In any one year, 30% of the trees in an orchard may be nonproductive 
trees (<10 kg fruit/tree), while other trees that are in an alternate bearing mode in the same 
orchard may be producing more than 200 kg of fruit in a heavy-on year. Both categories of trees 
generate consider noise in predictive models. Alternate bearing, heavy yielding trees have a 
large nutrient removal in the fruit harvest one year, but may accumulate nutrients the following 
year during an off-cycle. Similarly, low yielding trees introduce large modeling errors. There are 
many reasons a tree may be producing low levels of fruit, even with optimum leaf nutrient 
concentrations, for example drought, poor pollination, summer heat induced fruit drop, etc. 
Filtering out the noisy components of the dataset through a hierarchical analysis thus enables a 
sharp focus on design of fertilization programs to maintain highly productive trees and possibly 
to help suppress alternate bearing.  
 
One of the major challenges in this research project is the constraint imposed by modeling plant 
nutrient yield relationships in a manner consistent with Liebig’s Law of the Minimum, which is 
a foundational principle in plant nutrition. In its simplest form, this law states that for any 
specific combination of elements, the single element that is most limiting must be corrected 
before any progress can be achieved by managing another element that is less limiting. 
However, the simple version of Liebig’s law does not take into account the effects of nutrient 



excesses or phenomena such as chloride toxicity, which also impose limits to fruit production. 
Moreover, Liebig’s law refers to total plant growth, and does not necessarily pertain to fruit 
production. Heavy vegetative growth can reduce fruit production, when carbon is partitioned 
toward canopy growth rather than reproduction. Here we refine Liebig’s law to measure not 
only how nutrient limitations affect potential yields, but also how nutrient excesses and 
nutrient interactions control fruit production.  
 
The relationships between different nutrients and avocado yields can be visualized in a number 
of graphic representations. One of the most powerful methods is the use of Kohonen self-
organizing maps, which shows the specific combinations of conditions (leaf nutrient levels) that 
are associated with different yield potentials. However, in pattern recognitions models using 
feed-forward, artificial neural network analyses, we found that independent model runs yielded 
different solutions and that such models do not adequately capture the limit functions imposed 
by Liebig’s law. More specifically, predictive ANN models allow tinkering with nonlimiting 
nutrients to offset yield losses imposed by nutrient excesses, whereas Liebig’s law would not 
allow an adjustment of potassium to offset a calcium deficiency.  In order to develop limit-based 
models, we discovered that we needed a mathematically rigorous approach to filter the data set 
to those trees there were the most highly productive, but not in an alternate bearing state, and 
then use ranking methods to identify which nutrient or nutrient interactions established the 
greatest constraint. In our final analysis, we show that this can be achieved by using lookup 
tables for pairwise nutrient interactions that simultaneously rank the constraints imposed by 
any and all nutrient limitations, excesses, and imbalances in leaf nutrient levels.  
 
A major finding from our research is that much of the avocado industry in California may be 
over-applying some fertilizers such as nitrogen and potassium, and under fertilizing sulfur and 
calcium (gypsum). This finding is supported by models (high statistical confidence) that show 
how excesses of nitrogen, potassium, or for that matter over fertilization with any element is 
associated with huge losses in fruit production.  Another important finding is that plant 
nutritional status appears to be linked to alternate bearing in avocado, and may actually be a 
contributing driver that sets trees into an alternate bearing pattern. This hypothesis is 
supported by data showing that large nutrient imbalances, e.g. between nitrogen and 
potassium, were mainly associated with alternate bearing trees. A third focus of this research 
was the study of soil salinity and chloride toxicity on avocado yields, and the extent to which 
this might be controlled by managing tree fertilization, soil water monitoring, and leaching 
practices. Results of those studies are published in several articles in the Annual Avocado 
journal and Grower magazine articles, and were also shared in many seminars and grower 
meetings over the past five years by Crowley and his Ph.D. candidate, graduate student Julie 
Escalera. We also have several manuscripts in preparation, including individual articles dealing 
with the application of data mining techniques for nutrient analyses, and a review article that 
examines: Crop Production Functions to Address Water Scarcity and Salinity: A literature 
review with focus on citrus and avocado 

 
Many different scientists, graduate students, undergraduate student volunteers postdoctoral 
research associates, visiting foreign researchers from Chile, Mexico and Pakistan, contributed to 
this project, helping with fruit harvests, and soil and leaf sampling, or by carrying out 
interesting subprojects that gave new insights into topics such as the contributions of plant 



growth promoting bacteria to avocado salinity tolerance, or the relationship between root 
hypoxia and chloride uptake. Among our research team members, we acknowledge the 
essential contributions of the staff research associates who kept everyone organized in carrying 
out different activities, namely, Woody Smith, Stephen Qi, and Toan Khuong. In the final phase 
of this project, all of the data analysis has come together into the final integrated models 
through the intellectual contributions of postdoctoral associate, Dr. Salvatore Campisi. In the 
latter phase of the project, we also brought in Drs. Carol Lovatt and Phillipe Rolshausen as 
members of our project team who contributed to detailed discussions of the data. The massive 
data set that enabled our high resolution modeling was through the combination of data 
acquired by both David Crowley and Carol Lovatt’s research teams and enabled us to end our 
project early with return of two years funding to the California Avocado Commission. Our 
database construction was further supercharged through the generous support of Fruit 
Grower’s Laboratory, who carried out hundreds of leaf analyses as a no-cost contribution to our 
project.  The high quality analytical data provided by FGL provided the foundation data set for 
studying leaf chloride and nutrient interaction effects on avocado yields. Last, but not least, all 
of us who have worked on this project acknowledge the generosity and enthusiastic support of 
the avocado growers who allowed us to on their property, and facilitated this research with 
excellent management, and great field discussions. The California Avocado Commission 
supported this research, and not only provided the core research funding, but also gave 
excellent feedback over the years in discussions with the CAC project management team and 
production research committee.  

 
Conceptual Framework and Methods: 
 
 One of the main principles of plant nutrition is Liebig’s Law of the Minimum, which states that 
plant growth is restricted by the most limiting element. Following this concept, growth 
responses will not be observed by providing more of any particular limiting element unless the 
deficiency by the most limiting element has first been corrected. This concept is thus 
fundamental to predicting how multiple nutrient deficiencies affect plant growth. On the other 
hand, whether this law also pertains to fruit yields on perennial orchard crops such as avocado 
is not clear. Nutrient excesses and imbalances also affect fruit production independently of tree 
growth, as commonly seen when fertilization pushes tree vegetative growth at the expense of 
fruit production.  
 
To better understand and predict how nutrient interactions affect fruit production by avocado 
trees, we have generated crop production models that utilize data mining approaches to 
explore how different nutrient ratios affect avocado yields. Another independent approach 
utilizes artificial neural network (ANN) models to examine the relationships between all 
nutrient elements simultaneously. Given that there are eleven elements that are required for 
plant growth, the possible number of element interaction combinations are in the thousands, 
even if simplified to conditions classifying each element deficient/sufficient (211 = 2048). This 
large degree of freedom creates a challenge for deriving a predictive model that includes all 11 
essential elements. Moreover, ANN models allow tinkering with various combinations of 
elements to increase yields while not fully addressing the limit threshold imposed by the most 
limiting element (ie., a violation of Liebig’s law of the minimum).  
 



To address these constraints, we show that this can be resolved by applying quantile regression 
and frontier/envelope analyses, which can be used to model the impact of nutrient limitations, 
excesses, and imbalances. These relationships are graphically presented as a series of figures 
showing the yield potentials associated with any nutrient or nutrient pair combination. The 
sorting function allows the most limiting conditions to be ranked and identified, and establish a 
top-end constraint on the yield potential that must be addressed, such that different constraints 
are revealed in a stepwise fashion as a grower examines how to best optimize their fertilization 
program. In other words, if chloride toxicity is the primary constraint, adjusting 
calcium/magnesium ratios or potassium levels do not provide yield benefits until the chloride 
toxicity is first resolved.  We also examined closely those interactions that have been identified 
in prior research on plant nutrition for their potential effects on avocado yields. These include 
the element ratios for Ca/Mg, Ca/B, and Zn/P among others.  
 
Holistic Data Mining Using Kohonen Self Organizing Maps (KSOM) 
 
One of the most powerful tools for examining the relationships between fruit yield and all of the 
plant essential elements measured by leaf analysis is the use of KSOM analysis. In a KSOM, a 
neural network analysis is used to find the shortest possible distance between all variables 
simultaneously in a multi-dimensional mathematical space. The results are then shown as a set 
of panels in which individual panels are displayed that represent the values for each variable as 
individual color-coded grids. Under each panel assigned to a variable, the KSOM shows the 
actual values that correspond to the color range. Using a color code to represent the full range 
of values, the data are fully normalized with blue representing low values and red representing 
the highest values. By examining the panel that displays fruit yield, we see the portion of the 
map that corresponds to high yields, and then explore each of the other panels sequentially to 
see what levels of nutrients are associated with high fruit yields. Likewise we can examine 
alternate bearing, or low bearing trees and the nutrient profiles associated with those 
conditions. Conversely, we can study how high nitrogen or chloride levels affect yields by 
identifying the regions in those panels that represent those conditions, and then examine the 
same region in the yield panel to see the yields associated with specific nutrient conditions. 
While not practical for direct use as a decision support tool, this approach provides a holistic 
view of the data and serves well for mining relationships that can be examined in further detail 
using other data modeling approaches. 
 
 
 
 
 



 
 

 
Figure 1. Kohonen self-organizing map of nutrient-yield relationships for the macroelements. 
Panels were extracted from a large KSOM that was constructed using all 11 nutrients. Circles 
highlight panel areas corresponding to high yield, but only with low levels of N, P, K. Fertilizer 
excesses > 2.5% N, .2 P, and 0.8-1.2% K content. Note that the highest yields are associated with 
low to intermediate N (2.5%), P .12-.15%, and < 1.2% K; whereas high levels of N and K are 
associated with low yields. Because the model is built on data from a transect of the industry, 
this strongly suggest many avocado growers are over fertilizing wit N and K fertilizers to the 
extent they may be completely lose all fruit production.  
 
In Figure 1, above the bottom left corner of the first panel denotes having a dark red color 
denotes trees with up to 129 kg fruit per tree. Trees in that region have values of nitrogen 
ranging from 2.09 to 2.6 % N. As N levels increase to near 3%, we see yield complete yield loss 
to <10 kg fruit per tree. These data strongly match the same recommendations derived by 
completely independent quantile regression methods, and illustrates the power of KSOM 
methods to obtain a holistic picture of the importance of particular element or nutrient 
imbalance and the effect on plant yield using visual inspection alone. 
 
If you take a still closer look the same figure, you will also observe that there are yellow patches 
in the right side corners for the yield panel (circled in black), this represents a situation in the 
data set were good yields (yellow color) were also be obtained that were distinct from the other 
productive trees. Examining that same region in the N, P, K panels show those conditions: K 
levels are high, as long as P and N are also limiting. 
 

  
 
Correspondingly, when both K and P are high, and N is intermediate, fruit yields are suppressed. 
 

    

    



 

 
 
Using the KSOM approach, we can also examine the nutrient profiles associated with trees in an 
off-cycle, either as a result of alternate bearing, or due to environmental factors that suppress 
production in any given year. In Figure 2, we see these trees represented in the first panel as the 
blue area representing trees producing less than 10 kg fruit. 
 

    



 
 
Figure 2. Nutritional factors associated with nonproductive trees / and potential driver of 
alternate bearing. Top left panel blue color represents nonproductive trees; Top middle, fruit 
yield in kg; Top right, leaf chloride; Bottom row, leaf concentrations of N, P, K, Ca, and K. 
 

 
In Figure 2 above, KSOM models of nutrient profiles for non-productive trees reveal that this 
condition is primarily associated with trees having large nutrient imbalances among the 
macronutrients, or in trees experiencing chloride toxicity (Figure 2). Note that elevated leaf 
chloride concentrations (top right, red colored areas) are associated with generally low levels of 
fruit production. However, complete yield losses occur only during a combination of elevated 
chloride levels when combined with imbalances of the macronutrients, particularly when trees 
also have unbalanced N and P levels (low N and high P with elevated Cl). The analyses further 
suggest non-productivity may be associated with imbalanced Ca and K (high Ca, low K with 
elevated Cl). Altogether, the KSOM analysis reveals many different nutrient interactions that are 
of interest for further examination with detailed production-function models. 

 
Hierarchical modeling of nutrient yield relationships using scatter plots, envelope 
analyses and quantile regression. 
 
In the course of this research, we have carried out in-depth examination of the 
relationships between yield potential and each of the plant essential elements. In a 
hierarchical approach, we start first with an x/y plot showing the yields that are 
associated with increasing nutrient levels. The example provided in Figure 3 shows the 
x/y scatter plot for potassium. As shown in this example, the plotted data emerge as a 
shotgun pattern in which there are no apparent nutrient-yield relationships, and 
regression analysis fails to provide any statistically significant equations. 
 

   

    



 
 

Figure 3. Scatter plot of nutrient-yield relationships for potassium. 
 
In the second step of the hierarchical analysis, the data cloud from Figure 3 

containing some 3500 observations is shown after it has been collapsed into a single 
vector plot, where the target levels for each nutrient are instead identified by the data 
symbols that vary in size and color (blue dots: nonproductive or low yielding trees; 
yellow circles: productive trees; large red circles, highly productive trees. Below is an 
example for potassium.  
 

 
Figure 4. Univariate vector plot for potassium, high yielding trees are indicated by color 
and circle size. Every circle represents an independent observation (individual tree) from 
a transect of the avocado industry in California. Trees with high yields require 0.5 to 1.5% 
potassium, centering at 0.8 as a target value. More specific target levels and fertilizer 
recommendations will depend on levels of other nutrients and element ratios. 

 
In the next step, we extend this approach to nutrient interactions to examine how 
pairwise combinations of elements correspond to yield potential. The example shown in 
Figure 5, below, is representative of how we can study nutrient interactions and 



examines the yields for trees having different potassium and phosphorus levels. The 
linear arrangements of the data depicting high yield trees (yellow and red circles) 
illustrates that high yields require potassium and phosphorus to increase concomitantly, 
ie. a significant nutrient interaction is evident between these nutrients. Nonetheless, 
there are also many nonproductive trees (small, blue circles) that also occur along this 
same trend line, ie. trees that are good for both P and K, but which have some other 
nutrient limitation or environmental constraint that has affected yield. 
 

 
 

Figure 5. Scatter plot of trees with different leaf phosphorus (% P) and potassium (%K) 
levels. Yields associated with each observation are depicted by color and symbol size. 
Color bar on the right gives yield in kg/tree ranging from 0 (dark blue) to as high as 350 
kg fruit per tree (dark red). Dashed trend line shows apparent relationship between P 
and K, in which trees with high P content need increased K levels in order to maintain 
productivity 
 
While these types of plots provide good initial insight into the data cloud for nutrient yield 
relationships, still more detailed analysis is required to examine the distribution of trees for any 
particular nutrient level. Keeping with potassium as our example, Figure 6 provides an example 
of the next step in dissecting nutrient yield relationships. This step employs quantile regression 
in which the data are sorted into quantiles that represent blocks of  data corresponding to a 
particular nutrient range.  The blocks enable groups of about 300 observations into individual 
groups or quanta using regression models to explore how each subgroup behaves with respect to 
a certain characteristic such as leaf potassium content. Results using this approach were 
previously reported in detail in the activity reports on the macro- and micronutrients.  
 



As shown in Figure 6, each nutrient range affects the distribution of trees in different production 
categories. The lowest number of nonproducing trees (blue) occurs for trees having ~0.8% K, 
whereas the highest number of exceptional trees (yellow) having from 0.88 to 0.9% K. The 
figures thus reveal a target range where K levels should be maintained in order to achieve the 
best possible yields with respect to this nutrient.  
 

 
Figure 6. Quantile regression of yield-nutrient relationships for potassium. Left: Yield data are 
displayed on the y axis in relation to potassium levels. The blue boxes above each nutrient range 
represent the distribution of data for the middle 50% majority of trees having K values within a 
particular range for potassium. The ranges were established by examining the distribution of K 
values across the entire data set. Each range represents 10% increments or approximately 350 
trees. Within each box, the horizontal red line indicates the median tree. The red cross symbols 
indicate trees that are at the highest production levels, but that are outliers from the majority 
group. Those trees with extraordinary high production are generally in an alternate bearing 
mode. The right figure provides similar information, but breaks the distribution into further 
categories, with dark blue corresponding to nonproducing trees, blue and green representing 
medium and high producing trees, and yellow corresponding to trees producing more than 200 
kg fruit. 
 
Another method that can also be applied to identify the target nutrient levels uses envelope 
analysis. This is a traditional method in which the data cloud is “enveloped” using regression 
analysis that generates a linear equation that can be used to draw a line describing the curve for 
the best yielding trees. 
 



 
 
Figure 7. Linear model of maximum fruit yields obtained at different concentrations of leaf 
potassium (% K). The equation used to generate this envelope curve is given to the right. Note the 
high R square value indicating excellent confidence in this production function model.  
 
 

 
 
Figure 8. When the data in Figure 7 are overlaid with 
a plot of the distribution frequency for number of 
trees at each concentration; this provides a snapshot 
of the industry and where it is poised with respect to 
low yields caused by potassium over fertilization. 
 
The envelope analysis strongly suggest that as many 
as 20% od growers are over fertilizing for 
potassium, with suppression of yield potential 
occurring at leaf concentrations greater than 1% K. 
Only 20% of trees in our study were in the optimum 
target value of 0.8% K.  Another 20% of trees are low 
in K. Our models also suggest nutrient imbalances 
such as excessive potassium may be implicated in 
alternate bearing. The number of nonbearing trees in 
an orchard increases to 36% when leaf K levels are 
above 1.4%.  
 
 

The above example of how we examined the effects of potassium on avocado yields has been 
extended to all 11 of the macro and micronutrients, and further consider the effects of chloride 
toxicity. (See activity reports 2016 for macronutrients and micronutrients; also provided here as 
Appendices 2 and 3 attached to this final report). Among the key findings submitted in our earlier 
reports were the detrimental effects of excessive nitrogen, and the common existence of 
deficiencies for calcium, magnesium, and zinc. We also quantitatively showed the effects of 
chloride toxicity on avocado yields and provided equations that can be used to estimate yield 
losses associated with salinity induced, chloride toxicity. 



 
Putting it altogether: The Final Model 
 
In the final year of the project, nutrient-yield response models were successfully developed for 
each of the 11 elements that are monitored by leaf analysis, and equations were generated to 
describe these functions. The final challenge in our research has been to conceptually constrain 
these models to Liebig’s Law of the Minimum. In other words, while we can derive probabilities 
for different fruit production levels categories that are associated with different values of 
nutrients, individually for each nutrient, the hierarchical methods described above do not 
provide a limit function that recognizes the greatest individual constraint that should be treated 
first. For example, using ANN models alone, we observe the generation of models that still allow 
tinkering with each of the various nutrients in a manner that can offset yield losses.  For example 
predicting yield increases if we adjust potassium when chloride toxicity is observed in the field 
data to be associated with complete yield loss. Under Liebig’s Law, the strict definition would be 
that the chloride toxicity must be alleviated first before adjusting potassium would have any 
affect on yield. To address this issue, it became apparent that the original data must be processed 
using various filters to generate a high-resolution data set of those trees that representing the 
truly most productive trees that are not alternate, and whose nutrient profile we would like to 
duplicate across the orchard. 
 
The most obvious problem with a noisy data set is that caused by trees with a high alternate 
bearing index that cycle through zero or low production and extraordinary yields the next year 
that are as high as 300 kg fruit per tree, about 10 times the fruit load on an average producing 
tree in California. Thus the first step in our final model development is to filter out these data 
from the broad data set and focus on the highly productive trees that are not in an alternate 
bearing state. The second step is then to generate yield-response relationships for each nutrient 
individually as well as for each nutrient pair combination where nutrient interactions and 
imbalances may either increase or decrease production with a numerical estimate of its potential 
effect on yield potential.  
 
This step employs the quantile concept in which the data are robustly analyzed by generating 
mini data sets (quanta) that are regressed with respect to yield. A yield-potential function is than 
mathematically determined for each quantile and the data are placed into lookup tables for each 
element. Here for presentation in a graphic format, we provide 11 figures, one for each element, 
in which we examined all possible combinations of all of the elements, altogether comprising 482 
analyses. These figures are attached in Appendix 1. Below, we describe the way in which these 
figures should be inspected and interpreted. The underlying data that were plotted in each figure 
are the same as that used to construct look-up tables by which the greatest constraint can be 
identified. In this manner, a computer software program / macro consisting of stepwise sorting 
and filtering can be used to quantitatively describe the potential yield losses associated with any 
particular nutrient profile that a grower wants to examine using the decision support tool. 
 
 
 
 



Interesting Interactions Revealed by Hierarchical Analyses of Pairwise Nutrient 
Combinations 
 
To guide the interpretation of the figures on how nutrient interactions affect avocado yield 
potential, some excerpts from the figures are explained in detail below. The interpretation is 
straightforward and corresponds to a color range where blue indicates complete suppression of 
productivity and increases in light shades across the spectrum from blue to yellow to indicate 
trees in the highest production category (Figure 9). 

 
Figure 9. Production function relationships for nitrogen and 11 other elements monitored by 
leaf analysis; yellow indicates the nutrient range for achieving the highest level of fruit 
production for filtered to exclude trees with low productivity (<10 kg fruit/ tree) or high 
alternate bearing. 
 
Important results contained in the above figure are that nitrogen is optimal between 2-2.5%; at 
high N levels, increased P and K (balanced fertilization) is necessary to maintain productivity. In 



order to attain maximum yields, calcium must be maintained at 1.5 to 2%; if nitrogen goes up 
above 2.5%, high levels of calcium can greatly suppress fruit yield; iron must be between 60-90 
ppm and deficiency becomes increasingly severe on fruit yields at high nitrogen levels; lower 
levels of boron near 30 ppm give best results with optimal nitrogen, intermediate levels of 
chloride allow better toleration of high nitrogen levels. Maintaining leaf nitrogen at 1-2.5% 
optimizes chloride tolerance, excessive nitrogen with high chloride completely eliminates fruit 
production. 
 
The reader is encouraged to explore the figures in Appendix 1 and draw information on various 
nutrient interactions. Below a few more interactions are highlighted for discussion. 

 
 
Fig. 10. High leaf potassium levels are associated with 
greatly reduced yields. The optimal level of potassium 
for increasing tolerance to chloride toxicity is at 1-
1.5% K. At lower K levels below 1%, chloride toxicities 
have a greater impact on fruit yields. 
 
 
 
Fig. 11. Leaf nitrogen levels are very interactive with 
chloride toxicity in suppressing avocado yields. At low 
levels of nitrogen, yields are completely impaired at 
0.3% Cl. Likewise, when nitrogen is greater than 2.5%. 
High yields under increasing chloride require 
maintenance of 2-2.5% N levels in the foliage. 
 
 

 
Fig. 12. It is essential to increase calcium levels to 
levels of 1.5-2% to maintain high productivity with 
increasing chloride levels caused by soil salinity. On 
the other hand, increasing leaf Ca to greater than 2% 
causes reduced yields in association with high leaf 
chloride.  
 
 

 
 

Fig. 13. Boron levels should be maintained at ~30 
ppm for best tolerance to high chloride conditions. At 
intermediate levels of chloride, boron can be 
tolerated up to 90 ppm before severe yield reduction. 
When chloride levels are above 0.9%, leaf boron 
levels above 60 ppm are associated with complete 
yield suppression.  



 
Fig. 14. The optimal level of iron in avocado leaf 
tissues is between 60-90 ppm, with leaf calcium at 
1.5-2%. At low iron levels below 60 ppm, high levels 
of leaf calcium are associated with decreased yields. 
This phenomenon is well documented in the 
literature as a condition known as lime-induced 
chlorosis.  
 
 
Fig 15. Excess potassium becomes particularly 
problematic for trees that are iron deficient with Fe 
below 60 ppm. Low iron and high K results in 
complete yield suppression. Likewise, low K and high 
iron. 
 
 
 

 
Fig. 16. High levels of boron are better tolerated 
when zinc concentrations are between 30-60 ppm. As 
zinc increases in the leaf tissue, higher levels of boron 
can provide better but still marginal productivity that 
at boron levels below 30 ppm. 
 
 
 

 
 
Fig. 17. At the optimal zinc level between 30-60 
ppm, calcium is optimized at 1.5-2%, whereas at 
lower zinc levels high levels of calcium are 
associated with complete yield suppression, another 
result that, like iron, is in agreement with a diagnosis 
of lime induced chlorosis. 
 
 

 
 
Fig. 18. Optimal calcium and magnesium levels are 
1.5-2% Ca and between 0.6-0.8% for Mg. 
Nonetheless, as levels vary in the plant tissue, high 
yield potentials are best for trees maintained with a 
3:1 with calcium: magnesium ratio.  
 
 



Fruit Quality  
 
During this research, exploratory analyses were also conducted on the relationships between 
leaf nutrient values and the ripening time of avocado. Results of our work show that chloride 
toxicity is associated with greatly reduced fruit shelf life (Figure 19). As shown in this 3-D plot, 
when fruit is removed from a cold storage and allowed to ripen, high leaf chloride levels are 
associated with greatly reduced ripening time as short as 0 days, thereby leading to a reduction 
in the amount of time available for transported and sale in the market. However, increasing 
appears to offset this shortened shelf life. Much more research is clearly warranted on this 
topic. 
 

 
 
Figure 19. Interactions of leaf chloride and calcium contents as predictors of the time to ripen 
following cold storage of Hass avocado fruit.  
 
 
Prototype Webpage for an Online Decision Support Tool 
 
In translating the data contained in the figures to a decision support tool, one way to proceed 
would involve the use of software based on look-up tables in which the yield-loss predictions 
are calculated and examined individually for each and all of the elements. The yield loss values 
can then be ranked with respect to their relative impact on fruit yield potential. In the online 
tool, a grower would enter his data for the leaf nutrient analysis, and the underlying software 
would then generate a matrix with all of the nutrient ratio calculations. The resulting profile 
would then be sorted to identify the most limiting constraint and flag the subsequent 
constraints that will then need to be corrected to make specific recommendations on how to 
achieve the highest possible yield potential. As an alternative to the use of lookup tables, the 
response functions for each nutrient and element pair could be expressed through computer 
routines that generate yield loss values based on equations and other information about the 
available data, e.g., soil chemical and physical data.  



 
A prototype interface for the decision support tool is provided below in Figure 20. 
 

 
 

 
Figure 20. Draft concept for a webpage providing a decision support tool for examining nutrient 
yield relationships and the impacts of adjusting different nutrients to their optimum target 
concentrations in the leaf tissue. When combined with look-up tables for different fertilizer 
materials, the tool could also calculate the cost, and cost-benefit ratio. The output from this 
particular page would then forward into other tools where fertilizer schedules and reports can 
be generated. 
 
 
 

  



How does our nutrient profile optimization compare to current recommendations? 
 

 
 
Figure 21. Excerpt from a plant tissue analysis report showing typical results for an avocado 
leaf analysis. Note very high levels of nitrogen, and compare optimal ranges of other elements 
with those from this research.  
 
 
Current recommendations for avocado in the above figure are based on recommendations that 
were originally generated for citrus and then directly adopted for avocado. The figure very 
nicely illustrates the variability that occurs in an orchard along a 3 row by 5-tree block of trees. 
Here leaf nitrogen levels are variable and generally excessive, both phosphorus and potassium 
are high to the level where yield potential has been reduced, calcium is excellent, zinc is 
deficient, iron is high, and copper, boron and sodium are fine. Leaf chloride levels are especially 
variable among the trees, the latter likely due to microsite variation in irrigation uniformity and 
soil leaching. Except for nitrogen, the optimum ranges in the bottom row of the table need 
considerable revision. As the data continue to come in through a decision support tool and 
analysis of massive amount of data that has been archived but never examined or interpreted. 
We believe that the data sequence approach that we developed for this research represents a 
novel method that has not been previously invented or applied for plant nutrition.  
 
 
 
Summary 
 
In the last phase of our project, we have focused on translating all of our results into concise 
models that can then be translated in the next phase of this project into an actual online 
decision support tool. This will require new funding support and collaborative implementation 
with a software company that specializes in data management and agriculture. The final 
deliverable for this project is this report itself, in which we describe the main mathematical 
relationships and conceptual framework for modeling nutrient-yield responses. This 
information can then be readily implemented into online decision support tools to guide 
avocado fertilization and tree nutrient management.  We are currently in negotiations with a 
software company to license the hierarchical data analysis methods by which predictive models 



for plant yield potential can be generated. The basic science and discovery factor in this 
research has led the UC Office of Research to file a patent application (UC-2016-99T-1) for new 
intellectual property with broad relevance for improving the nutritional management of any 
crop that is studied using our methods.  
 
Our methods entail a sequential process such that: 
 

• A grower enters leaf tissue analysis data after which a macro routine generates a matrix 
of data describing the nutrient concentration and interaction effects that are identified in 
the leaf analysis profile as their potential quantitative effects on plant yields. 
 

• The matrix generated above is filtered and sorted to identify trees or plants with the best 
performance characteristics and processed through other plant trait relevant filters (age, 
orchard spacing, alternate bearing) to generate a database for high resolution modeling 
using archived data collected over multiple years. 

 
• Quantile regression and ANN methods are applied to identify optimal ranges for each 

nutrient element and data mining is carried out using Kohonen Self Organizing Maps to 
obtain a holistic view of soil and plant nutritional factors that affect plant yield and fruit 
quality. Application of neural networks to develop pattern recognition models for 
predicting plant yield potentials for plants having different leaf nutrient profiles to 
independently verify results that are obtained using quantile regressions. Cross-
validation. 

 
• Equations derived from the above models are generated to describe the effects of 

nutrient deficiencies, excesses, or imbalances on potential yield. The most constraining 
nutrients or interactions are then ranked by their ability to affect yield potential in order 
to generate a specific correction sequence that attempts to most efficiently manage plant 
nutrient constraints in a cost effective, stepwise fashion that is consistent with Liebig’s 
Law of the Minimum.   

 
  



Appendix 1. Figures illustrating nutrient yield relationships for individual nutrient 
elements and in pairwise combinations with all other plant essential elements.  
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